Polymer Modified Asphalt Emulsions

Dr. Koichi Takamura
BASF Corporation
Charlotte Technical Center
Charlotte, NC 28273
Takamuk@basf.com
Asphalt: Flexible Pavement

- Dissipate Applied Energy without permanent damage
- Combination of **Viscous** and **Elastic** Behaviors
Automotive Suspension System

Shock Absorber = Viscous
Spring = Elastic
Automotive Suspension System

- Dissipate Applied Energy quickly without permanent damage to your car
- Combination of Shock Absorber and Spring
Time Effect on Elastic Materials

- Time has no effects on total deformation
 - Deformation (Strain) ≠ Time
 - Deformation (Strain) ∝ Weight (Stress)
Time Effect on Viscous Materials

- Continue to deform until Stress is removed
 - Deformation (Strain) \propto Weight (Stress) and time
 - Slow Traffic = More Rutting
Time Effect on Elastic Materials

- Time has no effects on total deformation
 - Deformation (Strain) ≠ Time
 - Deformation (Strain) ∝ Weight (Stress)

- Polymers improves elasticity of the cured asphalt emulsion

- How?
Pure Polymer and Unmodified Asphalt Properties

- **SBR Polymer**
 - High Elasticity and High Elongation at wide range of temperature
 - G^* changes only factor 10 between −20 and 80°C

- **Asphalt**
 - Adequate properties at 0-40°C
 - Brittle at low and limited strength at high temperature.
 - 100,000 times change in G^* at the same temp. range

- **How to Achieve “Maximum Improvement with Minimum Level “?**
SEM Photo of the Latex Foam

200 µm
Latex Foam

- 95% air and 5% Polymer
- Softness from Air
- Desired Strength from Polymer Network

Polymer Aerosol

- 95% air and 5% Polymer
- Mix as Air
- No Physical Strength from Polymer

Latex
Latex Foam vs Polymer Modified Asphalt

- Strong Contrast in Physical Properties between Continuous (Polymer) and Dispersed (Air or Asphalt) Phases
 - “Softness from Air” vs Hardness from Asphalt
 - Elasticity/Strength from Polymer Network
 - Dispersed Polymer would give only minimum effects on physicals
Asphalt Emulsion

- Latex Particles
- Asphalt droplets
<table>
<thead>
<tr>
<th>Latex Modified Emulsion</th>
<th>Cured Bitumen Emulsion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitumen</td>
<td>Bitumen</td>
</tr>
</tbody>
</table>

- **Optimum for Fine Polymer Network Formation**

Diagram: Latex film surrounds bitumen droplets in the modified emulsion, leading to a fine polymer network in the cured emulsion.
Microsurfacing

SBR polymer/cement complex form honeycombs

10 µm
How to make fine, stable asphalt emulsions?
Conditions for droplet break-up

- **Viscosity ratio** and **Flow type** are two critical parameters for emulsion preparation.
 - No droplet break-up under simple shear flow at the droplet viscosity > 4x of the suspending medium viscosity.
 - Need the **Extensional Flow** to produce fine emulsions.

\[
G^* = \frac{G}{\gamma} \frac{\eta_c b}{\eta_d}, \quad \lambda = \frac{\eta_d}{\eta_c}
\]

- \(G = \) shear rate
- \(b = \) droplet radius
- \(\gamma = \) interfacial tension
- \(\eta_c, \eta_d = \) viscosity of continuous and dispersed phases

Diagram:
- Break-up under simple shear flow
- Break-up under extensional flow
- Stable

Legend:
- Orange region: Conditions for asphalt emulsion production
- Green region: Break-up only under extensional flow
- Yellow region: Break-up under simple shear flow
Asphalt Emulsion Production

Colloid Mill Tooth

Colloid Mill Tooth
Mechanism of emulsion formation

- Latex polymer particles remain in the water phase
 - Does not affect the asphalt emulsion production
 - Easy to produce asphalt emulsion with fine particle size
- **Emulsifiers (surfactants)** prevent coalescence of droplets created
Surfactant = Surface Active Agent

How to make oil droplets like to be in water?

- Cover with one layer of molecules having two parts
 - Like to be in Water (hydrophilic)
 - Like to be in Oil or don’t like to be in water (hydrophobic)
How to Maintain Stable Oil Layer on Water?

- **Surfactant = Surface Active Agent**
 - Molecules preferentially accumulate at the surface
 - Hydrocarbon tail doesn’t like to be in water
 - Hydrophobic (lipophilic) group
 - A head makes strong interaction (i.e. hydrogen bonding) with water
 - Hydrophilic (lipophobic) group
Surfactant = Surface Active Agent

- Classified based on charge nature of the hydrophilic group
 - Anionic Surfactant
 - Soap: i.e. Potassium salt of fatty acid (K-Oleate)
 - Sodium salt of Dodecyl sulfonate (SDS)
 - with Ethylene Oxide group (EO)ₙ
Surfactant = Surface Active Agent

- **Cationic Surfactant**
 - Hydrocarbon chain with Amines

- **Non-ionic Surfactant**
 - Ethylene Oxide chains
 - Could be a large molecule (10<n<50)
Preventive maintenance with asphalt emulsion

- Chip Seal
 - Rural Highways
- Microsurfacing
 - Interstate and Urban Highways
Chip Seal (Surface Seal)
Chip Seal

- Cationic rapid setting (CRS) Emulsion with Soft Asphalt
- Spray “Hot” emulsion, cover with “Clean” aggregate, then roll
- Could be second aggregate for smooth surface
Chip Seal
Chip Seal
CRS for Chip Seal

Typical CRS Emulsion

<table>
<thead>
<tr>
<th>Composition</th>
<th>Level, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt</td>
<td>65</td>
</tr>
<tr>
<td>Water</td>
<td>35</td>
</tr>
<tr>
<td>Emulsifier</td>
<td>0.10</td>
</tr>
</tbody>
</table>

0.15% against asphalt

- Total surface area of asphalt droplets ≈120m²/100g emulsion
- Emulsifier molecules need to cover this surface ≈2.3x10²⁰
- Total emulsifier molecules added = 2.6x10²⁰
 - ~90% emulsifier on the asphalt surface
 - ~10% in the water
- Particle size and emulsifier type affect this valance
Industry Perception
- Positively charged asphalt particles adhere to negatively charged aggregates
Asphalt Emulsion = An Elephant, 30 Cats and 1 million Fleas
(asphalt droplet, latex particles and surfactant molecules)
The Elephant is too slow to move, thus you (aggregates) would immediately be covered with fleas
Surfactants in Chip Seal

Optimum Surfactant Level
- Cationic surfactants adsorb head-on and make aggregate oil-wet
 - Neutralize aggregate surface charge

Excess Surfactant Level
- Second surfactant layer forms to make aggregate water-wet
 - Cationic surface charge
Surface Area and Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Each Vol., m³</th>
<th>Total Number</th>
<th>Total Surface Area, m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1m</td>
<td>1m =1x1x1</td>
<td>1</td>
<td>=1x1x6</td>
</tr>
<tr>
<td>0.5m</td>
<td>0.5m =0.5x0.5x0.5</td>
<td>0.125</td>
<td>=0.5x0.5x6x8</td>
</tr>
<tr>
<td>0.125m</td>
<td>0.125</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>10cm</td>
<td>0.1x10⁻³</td>
<td>1/1000</td>
<td>=0.1x10⁻³x1000</td>
</tr>
<tr>
<td>1cm</td>
<td>1.0x10⁻⁶</td>
<td>1.0x10⁵</td>
<td>600</td>
</tr>
<tr>
<td>1mm</td>
<td>1.0x10⁻⁹</td>
<td>1.0x10⁵</td>
<td>6000</td>
</tr>
<tr>
<td>100µm</td>
<td>1.0x10⁻¹²</td>
<td>1.0x10¹²</td>
<td>6x10⁴</td>
</tr>
<tr>
<td>10µm</td>
<td>1.0x10⁻¹⁵</td>
<td>1.0x10¹⁵</td>
<td>6x10⁵</td>
</tr>
<tr>
<td>1µm</td>
<td>1.0x10⁻¹⁸</td>
<td>1.0x10¹⁸</td>
<td>6x10⁶</td>
</tr>
<tr>
<td>100nm</td>
<td>1.0x10⁻²¹</td>
<td>1.0x10²¹</td>
<td>6x10⁷</td>
</tr>
</tbody>
</table>

- **Fines in aggregate in chip seal**
 - 99% aggregate of 1cm cube = ~ 600m²
 - 1% fines (dust) of 100µm cube = 600m²
 - 0.1% fines of 10µm cube = 600 m²

- **Fines in Chip Seal and Slurry Seal Control**
 - Surfactant Distribution, thus Asphalt Emulsion Stability
How to Initial Setting of the Chip Seal Emulsion?

- Emulsifier adsorption to aggregate, road surface
 - Neutral charge of these surfaces
 - Slightly less emulsifiers on the asphalt surface
- Increase in emulsion pH
 - $\text{RCOOH} \Rightarrow \text{RCOO}^- + \text{H}^+$ (on the asphalt surface)
 - Neutral asphalt particles when $\text{RCOO}^- = \text{RN}^+$
- Reduction in emulsion temperature
 - Reduce emulsifier solubility at below Kraft Point
 - Less emulsifier on the asphalt surface

* Kraft Point = The minimum temperature for the micelle formation of ionic surfactant
Microsurfacing

AUTOBAHN near LUDWIGSHAFEN

Paved in Oct. 2001
Photo taken in Sept. 2003
Microsurfacing (Slurry Seal)

- Big Scale Blade Coating Operation
 - 2m wide and <1cm thick
 - 4-5km/hour
 - Open to traffic within 1 hour
- Rut filling capability, up to 5cm deep
 - Graded aggregate of fines to 1cm in diameter
 - Stable cationic asphalt emulsion
 - 1.5-2.5% emulsifiers
 - A large amount of free surfactants in the water phase
 - 1.0<pH<2.5
Paving Machine
Microsurfacing Operation

Portland cement (lime or Alum)
Micro-Surfacing

60sec < Mix Time < 180sec

Cohesion Development < 1 hr
Setting Mechanism

- **Bitumen Emulsion (1.5<pH<2.5)**
 - Positively Charged due to Adsorbed Cationic Surfactant at low pH

- **Cement addition increases slurry pH to above 10**
 - Organic acids start to dissociate as RCOO⁻ with Increasing pH
 - RCOO⁻ and adsorbed cationic surfactants determine total surface charge of bitumen droplets
 - Some surfactants are also adsorbed on fines surface

- **Setting characteristics are very sensitive to aggregate and asphalt**
Surface Charge of Bitumen Droplets

- Amines from Cationic Surfactants: RN⁺
- Organic Acids from Bitumen: RCOO⁻
- Total Charge on Bitumen Surface

K. Takamura et al. J. Colloid Interface Sci. 125, 212, 1988
Three years under wheels in Texas

Polymer Network

Microsurfacing

Latex Foam
Microsurfacing: SEM Photo

Latex Polymer-Cement composite

10 µm
Microsurfacing: Emulsion Residue

![Graph showing the relationship between curing time and rutting resistance temperature.](graph-image)

- **Emulsion Only**
- **Emulsion+Cement**
- **Emulsion+Cement+SBR**

Bar chart showing the phase angle at G^* for different conditions:
- **Emulsion only**
- **+ Cement**
- **+3% Latex**

Rutting resistance temperature, °C

Curing Time, day
Microsurfacing: Curing Process

- 1 day at Ambient Temperature, then Cured at 60°C
- Additional 2 PG Improvement within 10 days
- Additional 3 PG Improvement after One Month
 - Total 5 PG Improvement
Transverse Shear Stress by Radial Tire

- **Bias-Ply Tire** generates vertical contact stresses to the pavement
 - Fracture initiates at bottom of the pavement layer and penetrates to the surface

- **Radial Tires** Exert Excess Transverse Shear Stresses to the Asphalt Pavement Layer
 - Longitudinal pavement crack at the pavement surface

Byron Ruth et al. U. of Florida
Binder Requirements for Preventive Maintenance

Radial Tire

- Excess shear stresses to thin Surface Treatments (Chip Seal & Microsurfacing)
 - Need to withstand higher strain/stress levels than the hot mix binder, especially under fully loaded radial truck tires
Fatigue Resistance Test

1. Strain sweep from low to high strain (i.e. 0.1 to 5%)
2. Repeated stresses at constant strain (i.e. 5%) for 30 min
3. 0.1% strain for 15 min to monitor potential recovery
4. Repeat 2 and 3 to monitor reduction in binder strength under repeated high strain-stresses
 - Choose temperature at $G^* = 1 – 10$ MPa
The emulsion residue is weaker than the original asphalt
- Asphalt droplets do not fully coalesce even after cured for 1 day at 60°C
Flexible SBR latex polymer honeycombs absorb excess stresses without permanent deformation.
Earthquake Resistant Building

Stress Absorbing Rubber Pads

Foundation
Advantages of Polymer Network

- SBR latex polymer honeycombs remain flexible, and take stresses without permanent deformation
Conclusions

- Latex polymer remains in the water phase of the asphalt emulsion
- Transfer to Polymer Honeycombs surrounding asphalt particles only when needed (upon curing)
 - Improve elasticity of asphalt binder
 - Provide enhanced fatigue resistance under repeated high strain stresses (i.e. high load traffics with radial tires)
 - Honeycombs of cement/polymer complex to improved rut filling capability
- Current residue recovery procedures by distillation & evaporation do not reproduce the polymer morphology
 - Only tell Polymer modified or not